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TESTING THE MARKOV PROPERTY WITH ULTRA HIGH

FREQUENCY FINANCIAL DATA

Abstract: This paper develops a framework to test whether discrete-valued

irregularly-spaced financial transactions data follow a subordinated Markov

process. For that purpose, we consider a specific optional sampling in which

a continuous-time Markov process is observed only when it crosses some

discrete level. This framework is convenient for it accommodates not only the

irregular spacing of transactions data, but also price discreteness. Further, it

turns out that, under such an observation rule, the current price duration is

independent of previous price durations given the current price realization. A

simple nonparametric test then follows by examining whether this conditional

independence property holds. Finally, we investigate whether or not bid-ask

spreads follow Markov processes using transactions data from the New York

Stock Exchange. The motivation lies on the fact that asymmetric information

models of market microstructures predict that the Markov property does

not hold for the bid-ask spread. The results are mixed in the sense that

the Markov assumption is rejected for three out of the five stocks we have

analyzed.

JEL Classification: C14, C52, G10, G19.

Keywords: Bid-ask spread, nonparametric tests, price durations, subordi-

nated Markov process, ultra-high frequency data.
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1. Introduction

Despite the innumerable studies in financial economics rooted in the Markov

property, there are only two tests available in the literature to check such

an assumption: Aı̈t-Sahalia (1997) and Fernandes and Flôres (1999). To

build a nonparametric testing procedure, the first uses the fact that the

Chapman-Kolmogorov equation must hold in order for a Markov process

compatible with the data to exist. If, on the one hand, the Chapman-

Kolmogorov representation involves a quite complicated nonlinear functional

relationship among transition probabilities of the process, on the other hand,

it brings about several advantages. First, estimating transition distributions

is straightforward and does not require any prior parameterization of con-

ditional moments. Second, a test based on the whole transition density is

obviously preferable to tests based on specific conditional moments. Third,

the Chapman-Kolmogorov representation is well defined, even within a mul-

tivariate context.

Fernandes and Flôres (1999) develop alternative ways of testing whether

discretely recorded observations are consistent with an underlying Markov

process. Instead of using the highly nonlinear functional characterization

provided by the Chapman-Kolmogorov equation, they rely on a simple char-

acterization out of a set of necessary conditions for Markov models. As in

Aı̈t-Sahalia (1997), the testing strategy boils down to measuring the closeness

of density functionals which are nonparametrically estimated by kernel-based

methods.
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Both testing procedures assume, however, that the data are evenly spaced

in time. Financial transactions data do not satisfy such an assumption and

hence these tests are not appropriate. To design a consistent test for the

Markov property that is suitable to ultra-high frequency data, we build on

the theory of subordinated Markov processes. We assume that there is an

underlying continuous-time Markov process that is observed only when it

crosses some discrete level. Accordingly, we accommodate not only the ir-

regular spacing of transaction data, but also price discreteness. Further,

such an optional sampling scheme implies that consecutive spells between

price changes are conditionally independent given the current price realiza-

tion. This paper then develops a simple nonparametric test for the Markov

property by testing whether this conditional independence property holds.

There is an extensive literature on how to test either unconditional in-

dependence, e.g. Hoeffding (1948), Rosemblatt (1975), and Pinkse (1999).

The same is true in the particular case of serial independence, e.g. Robinson

(1991), Skaug and Tjøstheim (1993), and Pinkse (1998). However, there are

only a few works discussing tests of conditional independence such as Linton

and Gozalo (1999). In contrast to Linton and Gozalo (1999) that deal with

the conditional independence between iid random variables, we derive tests

under mixing conditions so as to deal with the time series dependence associ-

ated with the Markov property. Similarly to the testing strategies proposed

in the above cited papers,1 we gauge how well the density restriction implied

by the conditional independence property fits the data.

1 Exceptions are due to the tests by Linton and Gozalo (1999) and Pinkse (1998, 1999)
that compare cumulative distribution functions and characteristic functions, respectively.
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An empirical application is performed using data from five stocks ac-

tively traded on the New York Stock Exchange (NYSE), namely Boeing,

Coca-Cola, Disney, Exxon, and IBM. Unfortunately, all bid and ask prices

seem integrated of order one and hence nonstationary. Notwithstanding,

there is no evidence of unit roots in the bid-ask spreads and so they serve

as input. The results indicate that the Markov assumption is consistent

with the Disney and Exxon bid-ask spreads, whereas the converse is true for

Boeing, Coca-Cola and IBM. A possible explanation for the non-Markovian

character of the bid-ask spreads relies on sufficiently high adverse selection

costs. Asymmetric information models of market microstructure predict that

the bid-ask spread depends on the whole trading history, so that the Markov

property does not hold (e.g. Easley and O’Hara, 1992).

The remainder of this paper is organized as follows. Section 2 discusses

how to design a nonparametric test for Markovian dynamics that is suitable

to high frequency data. The asymptotic normality of the test statistic is then

derived both under the null hypothesis that the Markov property holds and

under a sequence of local alternatives. Section 3 applies the above ideas to

test whether the bid-ask spreads of five actively traded stocks in the NYSE

follow a subordinated Markov process. Section 4 summarizes the results and

offers some concluding remarks. For ease of exposition, we collect all proofs

and technical lemmas in the appendix.
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2. Testing subordinated Markov processes

Let ti (i = 1, 2, . . .) denote the observation times of the continuous-time

price process {Xt, t > 0} and assume that t0 = 0. Suppose further that the

shadow price {Xt, t > 0} follows a strong stationary Markov process. To

account for price discreteness, we assume that prices are observed only when

the cumulative change in the shadow price is at least c, say a basic tick. The

price duration then reads

di+1 ≡ ti+1 − ti = inf
τ>0
{|Xti+τ −Xti | ≥ c} (1)

for i = 0, . . . , n− 1. The data available for statistical inference are the price

durations (d1, . . . , dn) and the corresponding realizations (X1, . . . , Xn), where

Xi = Xti .

The observation times {ti, i = 1, 2, . . .} form a sequence of increasing

stopping times of the continuous-time Markov process {Xt, t > 0}, hence the

discrete-time price process {Xi, i = 1, 2, . . .} satisfies the Markov property

as well. Further, the price duration di+1 is a measurable function of the

path of {Xt, 0 < ti ≤ t ≤ ti+1}, and thus depends on the information

available at time ti only through Xi (Burgayran and Darolles, 1997). In

other words, the sequence of price durations are conditionally independent

given the observed price (Dawid, 1979). Therefore, one can test the Markov

assumption by checking the property of conditional independence between

consecutive durations given the current price realization.

Assume the existence of the joint density fiXj(·, ·, ·) of (di, Xi, dj), and

let fi|X(·) and fXj(·, ·) denote the conditional density of di given Xi and
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the joint density of (Xi, dj), respectively. The null hypothesis of conditional

independence implied by the Markov character of the price process then reads

H∗
0 : fiXj(a1, x, a2) = fi|X(a1)fXj(x, a2) a.s. for every j < i.

It is of course unfeasible to test such a restriction for all past realizations dj

of the duration process. For this reason, it is convenient to fix j analogously

to the pairwise approach taken by the serial independence literature (see, for

example, Skaug and Tjøstheim, 1993). Thus, the resulting null hypothesis is

the necessary condition

H0 : fiXj(a1, x, a2) = fi|X(a1)fXj(x, a2) a.s. for a fixed j. (2)

To keep the nonparametric nature of the testing procedure, we employ kernel

smoothing to estimate both the right- and left-hand sides of (2). Next, it

suffices to gauge how well the density restriction in (2) fits the data by the

means of some discrepancy measure.

For the sake of simplicity, we consider the mean squared difference, yield-

ing the following test statistic

Λf = E[fiXj(di, Xi, dj)− fi|X(di|Xi)fXj(Xi, dj)]
2. (3)

The sample analog is then

Λf̂ =
1

n− i+ j

n−i+j
∑

k=1

[f̂iXj(dk+i−j, Xk+i−j, dk)− ĝiXj(dk+i−j, Xk+i−j , dk)]
2,

where ĝiXj(dk+i−j, Xk+i−j, dk) = f̂i|X(dk+i−j|Xk+i−j)f̂Xj(Xk+i−j, dk). Any

other evaluation of the integral on the right-hand side of (3) can be used.

At first glance, deriving the limiting distribution of Λf̂ seems to involve

a number of complex steps since one must deal with the cross-correlation
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among f̂iXj, f̂i|X and f̂Xj. Happily, the fact that the rates of convergence of

the three estimators are different simplifies things substantially. In particular,

f̂iXj converges slower than f̂i|X and f̂Xj due to its higher dimensionality. As

such, estimating the conditional density fi|X and the joint density fXj does

not play a role in the asymptotic behavior of the test statistic.

To derive the necessary asymptotic theory, we impose the following reg-

ularity conditions as in Aı̈t-Sahalia (1994).

A1 The sequence {di, Xi, dj} is strictly stationary and β-mixing with βr =

O
(

r−δ
)

as r → ∞, where δ > 1. Further, E‖(di, Xi, dj)‖
k < ∞ for

some constant k > 2δ/(δ − 1).

A2 The density function fiXj is continuously differentiable up to order

s + 1 and its derivatives are bounded and square integrable. Further,

the marginal density fX is bounded away from zero.

A3 The kernel K is of order s (even integer) and is continuously differ-

entiable up to order s on R
3 with derivatives in L2 (R3). Let eK ≡

∫

|K(u)|2 du and vK ≡
∫ [∫

K(u)K(u+ v) du
]2

dv.

A4 The bandwidths bd,n and bx,n are of order o
(

n−1/(2s+3)
)

as the sample

size n grows.

Assumption A1 restricts the amount of dependence allowed in the ob-

served data sequence to ensure that the central limit theorem holds. As

usual, there is a trade-off between the degree of dependence and the number

of finite moments. Assumption A2 requires that the joint density function
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fiXj is smooth enough to admit a functional Taylor expansion, and that the

conditional density fi|X is everywhere well defined. Although assumption

A3 provides enough room for higher order kernels, hereinafter, we implicitly

assume that the kernel is of second order (s = 2). Assumption A4 restricts

the rate at which the bandwidth must converge to zero. In particular, it in-

duces a slight degree of undersmoothing in the density estimation, since the

optimal bandwidth is of order O
(

n−1/(2s+3)
)

. Other limiting conditions on

the bandwidth are also applicable, but they would result in different terms

for the bias as in Härdle and Mammen (1993).

The following proposition documents the asymptotic normality of the test

statistic.

Proposition 1: Under the null and assumptions A1 to A4, the statistic

λ̂n =
n b

1/2
n Λf̂ − b

−1/2
n δ̂Λ

σ̂Λ

d
−→ N(0, 1),

where bn = b2d,n bx,n is the bandwidth for the kernel estimation of the joint

density fiXj, and δ̂Λ and σ̂2Λ are consistent estimates of δΛ = eK E(fiXj) and

σ2Λ = vK E(f 3iXj), respectively.

Thus, a test that rejects the null hypothesis at level α when λ̂n is greater

or equal to the (1 − α)-quantile z1−α of a standard normal distribution is

locally strictly unbiased.

To examine the local power of our testing procedure, we first define the

sequence of densities f
[n]
iXj and g

[n]
iXj such that

∥

∥

∥
f
[n]
iXj − fiXj

∥

∥

∥
=

(

n−1b
−1/2
n

)

and
∥

∥

∥
g
[n]
iXj − giXj

∥

∥

∥
=

(

n−1b
−1/2
n

)

. We can then consider the sequence of
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local alternatives

H
[n]
1 : sup

∣

∣

∣
f
[n]
iXj(a1, x, a2)− g

[n]
iXj(a1, x, a2)− εn`(a1, x, a2)

∣

∣

∣
= o(εn), (4)

where εn = n−1/2b
−1/4
n and `(·, ·, ·) is such that E[`(a1, x, a2)] = 0 and `2 ≡

E[`2(a1, x, a2)] < ∞. The next result illustrates the fact that the testing

procedure entails nontrivial power under local alternatives that shrink to the

null at rate εn.

Proposition 2: Under the sequence of local alternatives H
[n]
1 and assump-

tions A1 to A4, λ̂n
d
−→ N (`2/σΛ, 1).

Other testing procedures could well be developed relying on the restric-

tions imposed by the conditional independence property on the cumulative

probability functions. For instance, Linton and Gozalo (1999) propose two

nonparametric tests for conditional independence restrictions rooted in a gen-

eralization of the empirical distribution function. The motivation rests on

the fact that, in contrast to smoothing-based tests, empirical measure-based

tests usually have power against all alternatives at distance n−1/2. Linton

and Gozalo (1999) show that the asymptotic null distribution of the test

statistic is a quite complicated functional of a Gaussian process.

This alternative approach entails two serious drawbacks, however. First,

the asymptotic properties are derived in an iid setup, which is obviously not

suitable for ultra-high frequency financial data. Second, the complex nature

of the limiting null distribution calls for the use of bootstrap critical values.

Design a bootstrap algorithm that imposes the null of conditional indepen-

dence and deals with the time dependence feature is however a daunting
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task. In effect, Linton and Gozalo (1999) recognize that considerable addi-

tional work is necessary to extend their results to a time series context, while

the bootstrap technology is still in process of development.

3. Empirical exercise

We illustrate the above ideas using transactions data on bid and ask quotes.

The motivation for such an exercise is simple. Information-based models

of market microstructure, such as Glosten and Milgrom (1985) and Easley

and O’Hara (1987, 1992), predict that the quote-setting process depends on

the whole trading history rather than exclusively on the most recent quote,

and thus both bid and ask prices, as well as the bid-ask spread, are non-

Markovian. Therefore, one can test indirectly for the presence of asymmetric

information by checking whether bid and ask prices satisfy the Markov prop-

erty.

We focus on New York Stock Exchange (NYSE) transactions data rang-

ing from September to November 1996. In particular, we look at five ac-

tively traded stocks from the Dow Jones index: Boeing, Coca-Cola, Disney,

Exxon, and IBM.2 Trading at the NYSE is organized as a combined market

maker/order book system. A designated specialist composes the market for

each stock by managing the trading and quoting processes and providing

liquidity. Apart from an opening auction, trading is continuous from 9:30

to 16:00. Table 1 reports however that the bid and ask quotes are both

2 Data were kindly provided by Luc Bauwens and Pierre Giot and refer to the NYSE’s
Trade and Quote (TAQ) database. Giot (2000) describes the data more thoroughly.
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integrated of order one, and hence nonstationary. In contrast, there is no

evidence of unit roots in the bid-ask spread processes. As kernel density esti-

mation relies on the assumption of stationarity (see assumption A1), spread

data are therefore more convenient to serve as input for the subsequent anal-

ysis.

Spread durations are defined as the time interval needed to observe a

change either in the bid or in the ask price. For all stocks, durations be-

tween events recorded outside the regular opening hours of the NYSE, as

well as overnight spells, are removed. As documented by Giot (2000), du-

rations feature a strong time-of-day effect related to predetermined market

characteristics, such as trade opening and closing times and lunch time for

traders. To account for this feature, we also consider seasonally adjusted

spread durations d∗i = di/φ(ti), where di is the original spread duration in

seconds and φ(·) denotes a time-of-day factor determined by averaging du-

rations over thirty-minutes intervals for each day of the week and fitting a

cubic spline with nodes at each half hour. With such a transformation we

aim at controlling for possible time heterogeneity of the underlying Markov

process.

All density estimations are carried out using a (product) Gaussian kernel,

namely

K(u) = (2π)−3/2 exp

(

−
u21 + u22 + u23

2

)

, (5)

which implies that eK = (4π)−3/2 and vK = (8π)−3/2. Bandwidths are chosen

according to Silverman’s (1986) rule of thumb adjusted so as to conform to
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the degree of undersmoothing required by Assumption A4. More precisely,

we set

bu,n =
σ̂u

log(n)
(7n/4)−1/7, u = d, x

where σ̂d and σ̂x denote the standard errors of the spread duration (either di

or d∗i ) and bid-ask spread Xi data, respectively.

Table 2 reports mixed results in the sense that the Markov hypothesis

seems to suit only some of the bid-ask spreads under consideration. Clear

rejection is detected in the Boeing, Coca-Cola and IBM bid-ask spreads,

indicating that adverse selection may play a role in the formation of their

prices. In contrast, there is no indication of non-Markovian behavior in the

Disney and Exxon bid-ask spreads. Interestingly, the results are quite robust

in the sense that they do not depend on whether the spread durations are

adjusted or not for the time-of-day effect. This is important because the

Markov property is not invariant under such a transformation, so that con-

flicting results could cast doubts on the usefulness of the analysis. Further,

it is also comforting that these results agree to some extent with Fernan-

des and Grammig’s (2000) analysis. Using different techniques, they identify

significant asymmetric information effects only in the Boeing and IBM price

durations.

4. Conclusion

This paper has developed a test for Markovian dynamics that is particularly

tailored to ultra-high frequency data. This testing procedure is especially in-

13



teresting to investigate whether data are consistent with information-based

models of market microstructure. For instance, Easley and O’Hara (1987,

1992) predict that the price discovery process is such that the Markov as-

sumption does not hold for the bid-ask spread set by the market maker.

Using data from the New York Stock Exchange, we show that whether

the Markov hypothesis is reasonable or not is indeed an empirical issue. The

results show that the Markov assumption seems inadequate for the Boeing,

Coca-Cola and IBM bid-ask spreads, indicating that the market maker may

account for asymmetric information in the quote-setting process. In contrast,

a Markovian character suits the Disney and Exxon bid-ask spreads well,

suggesting low adverse selection costs. Accordingly, market microstructure

models rooted in Markov processes, such as Amaro de Matos and Rosário

(2000), may deserve more attention.
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Appendix: Proofs

Lemma 1: Consider the functional

In =

∫

ϕ(a1, x, a2)
[

f̂(a1, x, a2)− f(a1, x, a2)
]2

d(a1, x, a2).

Under assumptions A1 to A4,

n b1/2n In − b−1/2n eK E [ϕ(a1, x, a2)]
d
−→ N

(

0, vK E
[

ϕ2(a1, x, a2)f(a1, x, a2)
])

,

provided that the above expectations are finite.

Proof: Let z = (a1, x, a2), rn(z, Z) = ϕ(z)1/2Kbn
(z − Z), where Kbn

(z) =

b−1n K(z/bn), and r̆n(z, Z) = rn(z, Z) − EZ [rn(z, Z)]. Consider then the fol-

lowing decomposition

In =

∫

ϕ(z)[f̂(z)− Ef̂(z)]2 dz +

∫

ϕ(z)[Ef̂(z)− f(z)]2 dz

+ 2

∫

ϕ(z)[f̂(z)− Ef̂(z)]
[

Ef̂(z)− f(z)
]

dx,

or equivalently, In = I1n + I2n + I3n + I4n, where

I1n =
2

n2

∑

i<j

∫

r̆n(z, Zi)r̆n(z, Zj) dz

I2n =
1

n2

∑

i

∫

r̆2n(z, Zi) dz

I3n =

∫

ϕ(z)
[

Ef̂(z)− f(z)
]2

dz

I4n = 2

∫

ϕ(z)
[

f̂(z)− Ef̂(z)
] [

Ef̂(z)− f(z)
]

dz.

We show in the sequel that the first term is a degenerate U-statistic and

contributes with the variance in the limiting distribution, while the second

gives the asymptotic bias. In turn, assumption A4 ensures that the third
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and fourth terms are negligible. To begin, observe that the first moment of

rn(z, Z) reads

EZ [rn(z, Z)] = ϕ1/2(z)

∫

Kbn
(z − Z)f(Z) dZ

= ϕ1/2(z)

∫

K(u)f(z + ubn) du

= ϕ1/2(z)

∫

K(z)

[

f(z) +
1

2
f ′(z)ubn + f ′′(z∗)u2b2n

]

du

= ϕ1/2(z)f(z) +O
(

b2n
)

,

where f (i)(·) denotes the i-th derivative of f(·) and z∗ ∈ [z, z+ubn]. Applying

similar algebra to the second moment yields EZ [r
2
n(z, Z)] = b−1n eK ϕ(z)f(z)+

O(1). This means that

E(I2n) =
1

n

∫

EZ [r
2
n(z, Z)] dz −

1

n

∫

E2
Z [rn(z, Z)] dz

=
1

n

∫

[

b−1n eK ϕ(z)f(z) +O(1)
]

dz +O
(

n−1
)

= n−1b−1n eK

∫

ϕ(z)f(z) dz +O
(

n−1
)

,

whereas Var(I2n) = O (n−3b−2n ). It then follows from Chebyshev’s inequality

that n b
1/2
n I2n − b

−1/2
n eK E[ϕ(z)] = op(1). In turn, the deterministic term

I3n is proportional to the integrated squared bias of the fixed kernel density

estimation, hence it is of order O (b4n). Assumption A4 then implies that

n b
1/2
n I3n = o(1). Further,

E(I4n) = 2

∫

ϕ(z)EZ

[

f̂(z)− Ef̂(z)
] [

Ef̂(z)− f(z)
]

dz = 0,

whereas E(I24n) = O (n−1b4n) as in Hall (1984, Lemma 1). It then suffices to

impose assumption A4 to ensure, by Chebyshev’s inequality, that n b
1/2
n I4n =
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op(1). Lastly, recall that I1n =
∑

i<j Hn(Zi, Zj), where

Hn(Zi, Zj) = 2n−2
∫

r̆n(z, Zi)r̆n(z, Zj) dz.

Because Hn(Zi, Zj) is symmetric, centered and such that E [Hn(Zi, Zj)|Zj] =

0 almost surely, I1n is a degenerate U-statistic. Khashimov’s (1992) central

limit theorem for degenerate U-statistics implies that, under assumptions A1

to A4, n b
1/2
n I1n

d
−→ N(0,Ω), where

Ω =
n4bn
2

EZ1,Z2 [H
2
n(Z1, Z2)]

= 2bn

∫

Z1,Z2

[
∫

r̆n(z, Z1)r̆n(z, Z2) dz

]2

f(Z1, Z2) d(Z1, Z2)

= 2bn

∫
[
∫

r̆n(z, Z)r̆n(z
′, Z)f(Z) dZ

]2

d(z, z′)

= 2

∫

ϕ2(z)

[
∫

K(u)K(u+ v)f(z − ubn) du

− bn

∫

K(u)f(z − ubn) du

∫

K(u)f(z + vbn − ubn) du

]2

d(z, v)

∼= 2

∫

ϕ2(z)

[
∫

K(u)K(u+ v)f(z − ubn)

]2

d(z, v)

∼= 2 vK

∫

ϕ2(z) f(z) dF (z),

which completes the proof.

Proof of Proposition 1: Consider the second-order functional Taylor

expansion

Λf+h = Λf +DΛf (h) +
1

2
D2Λf (h, h) +O

(

||h||3
)

,

where h denotes the perturbation hiXj = f̂iXj − fiXj. Under the null hy-

pothesis that fiXj = giXj, both Λf and DΛf equal zero. To appreciate the
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singularity of the latter, it suffices to compute the Gâteaux derivative of

Λf,h(λ) = Λf+λh with respect to λ evaluated at λ→+ 0. Let

giXj(λ) =

∫

[fiXj + λhiXj](a1, x, a2)da2
∫

[fiXj + λhiXj](a1, x, a2)da1
∫

[fiXj + λhiXj](a1, x, a2)d(a1, a2)
.

It then follows that

∂Λf,h(0)

∂λ
= 2

∫

[fiXj − giXj][hiXj −DgiXj]fiXj(a1, x, a2) d(a1, x, a2)

+

∫

[fiXj − giXj]
2hiXj(a1, x, a2) d(a1, x, a2),

where DgiXj is the functional derivative of giXj with respect to fiXj, namely

DgiXj =

(

hiX

fiX
+
hXj

fXj

−
hX

fX

)

giXj.

As is apparent, imposing the null hypothesis induces singularity in the first

functional derivative DΛf . To complete the proof, it then suffices to appre-

ciate that, under the null, the second-order derivative reads

D2Λf (h, h) = 2

∫

[hiXj(a1, x, a2)−DgiXj(a1, x, a2)]
2 dFiXj(a1, x, a2)

given that all other terms will depend on fiXj−giXj. Observe, however, that

DgiXj converges at a faster rate than does hiXj due to its lower dimensionality.

The result then follows from a straightforward application of Lemma 1 with

ϕ(a1, x, a2) = fiXj(a1, x, a2).

Proof of Proposition 2: The conditions imposed are such that the

second-order functional Taylor expansion is also valid in the double array

case (di,n, Xi,n, dj,n). Thus, under H
[n]
1 and assumptions A1 to A4,

λ̂n −
b
1/2
n

σ̂Λ

n−i+j
∑

k=1

[fiXj(dk+i−j,n, Xk+i−j,n, dk,n)− giXj(dk+i−j,n, Xk+i−j,n, dk,n)]
2
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converges weakly to a standard normal distribution under f [n]. The result

then follows by noting that σ̂Λ
p[n]

−→ σΛ and

Λf [n] = E
[

f [n](di,n, Xi,n, dj,n)− g[n](di,n, Xi,n, dj,n)
]2

+Op

(

n−1/2
)

= n−1b−1/2n `2 + op
(

n−1b−1/2n

)

.
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TABLE 1

Phillips and Perron’s (1988) unit root tests

stock sample size truncation lag test statistic

Boeing ask 6,317 10 -1.6402

bid 6,317 10 -1.6655

spread 6,317 10 -115.3388

Coca-Cola ask 3,823 8 -2.1555

bid 3,823 8 -2.1615

spread 3,823 8 -110.2846

Disney ask 5,801 9 -1.2639

bid 5,801 9 -1.2318

spread 5,801 9 -112.1909

Exxon ask 6,009 9 -0.6694

bid 6,009 9 -0.6405

spread 6,009 9 -121.8439

IBM ask 15,124 12 -0.2177

bid 15,124 12 -0.2124

spread 15,124 12 -163.0558

Both ask and bid prices are in logs, whereas the spread refers to the differ-
ence of the logarithms of the ask and bid prices. The truncation lag ` of
the Newey and West’s (1987) heteroskedasticity and autocorrelation consis-
tent estimate of the spectrum at zero frequency is based on the automatic
criterion ` = [4(T/100)2/9], where [z] denotes the integer part of z.
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TABLE 2

Nonparametric tests of the Markov property

duration adjusted duration
stock

λ̂n p-value λ̂n p-value

Boeing 2.8979 (0.0019) 4.0143 (0.0000)

Coca-Cola 19.4297 (0.0000) 18.6433 (0.0000)

Disney -3.2095 (0.9993) -2.6822 (0.9963)

Exxon -1.0120 (0.8442) 0.4234 (0.3360)

IBM 20.0711 (0.0000) 14.1883 (0.0000)

Adjusted durations refer to the correction for time-of-day ef-
fects.
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